What is in your protein powder?

If you enjoy pure, unflavored whey protein, then by all means, keep doing your thing. However, companies usually add ingredients to give their product a marketing edge (such as a better flavor), so it’s worth considering if any of these additives should be sought out — or avoided.

Preservatives

Food preservation covers the use of physical and chemical methods to inhibit microbial growth and retain nutritional quality over time, thereby preventing or slowing decomposition. Traditional methods involved manipulating a food’s temperature (boiling, freezing) or physical state (drying, fermentation) or applying natural chemicals (sugar, salt ...). Often, these methods were combined into processes, such as curing (drying, smoking, and salting).


Today, these methods are still used, though often with a modern touch. For instance, pasteurization has replaced boiling, but both involve heating; spray-, freeze-, and vacuum-drying are modern methods of dehydration; and artificial preservatives have superseded sugar and salt. Advances in food technology have also led to novel methods of food preservation, such as irradiation.


Protein powders are preserved through drying, as dehydration (removal of the water content) inhibits microbial growth. It is therefore uncommon for protein powders to contain preservatives, be they natural or artificial. Plus, many preservatives cannot legally be used in protein powders (regulations state not only which preservatives can be used, but in which foods a specific preservative can be used; if a type of food isn’t listed, it is excluded by default). The preservatives you may encounter include notably vitamin C (ascorbic acid or ascorbate), vitamin E (tocopherol), and sorbates (calcium, potassium, or sodium sorbate).

Anticaking agents


Anticaking agents are food additives added to powders to prevent clumping (caking). They work either by absorbing moisture or by coating particles to make them water repellent.

Some common anticaking agents include magnesium stearate, silicon dioxide, calcium silicate, tricalcium phosphate, and stearic acid. You may even see powdered rice used. Most anticaking agents are natural products with well-established metabolic fates (meaning that what happens to them after ingestion is well documented). Magnesium stearate, for example, is simply a combination of magnesium (an essential mineral) and stearic acid (a saturated fatty acid). Calcium silicate is a combination of calcium (an essential mineral) and silica (a trace mineral). At food- additive doses, there is no risk of harm.


A study in some anticaking agents (tricalcium phosphate, calcium silicate, calcium stearate, corn starch, and silicon dioxide) found they hasten the degradation of vitamin C powder in high humidity (>75%),166 but vitamin C is known to degrade in the presence of water, whereas protein powders are not.

Soy lecithin

Because no one likes a clumpy protein shake, many whey protein powders contain lecithin, a natural emulsifier that helps the whey protein dissolve in liquids. Lecithin can be found in every cell in your body. The different types of lecithin are composed of various phospholipids, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI).


It has been known for decades that dietary lecithin, within the normal diet or as a supplement, gets incorporated in cell membranes and has beneficial health effects on the cardiovascular, nervous, and immune systems. But the amounts in food and supplements are far greater than those found in whey protein powders using lecithin as emulsifier (150–300 milligrams per 30 grams of protein powder, typically: a 0.5–1% concentration).


Lecithin was first identified in egg yolks (and named after them) and has since been found in a variety of foods, with the most common sources today being soybeans and sunflower seeds. Soy lecithin is what you’re most likely to find in whey protein powders, but there is no shortage of articles demonizing it as the worst thing since trans fats simply because it is derived from soybeans.

First, consuming a little soy lecithin as an additive is very different from drinking 3 quarts (2.8 liters) of soy milk per day, as was doing a 60-year-old man when he started suffering from erectile dysfunction, decreased libido, and gynecomastia (an enlargement of breast tissue in men).

Second, most negative perceptions about soy are false, including the idea that regular consumption decreases testosterone and interferes with thyroid function.